229k views
0 votes
Help integrate: cot^3(x)

User Stepaklots
by
8.6k points

1 Answer

5 votes

\displaystyle\int\cot^3x\,\mathrm dx=\int\cot^2x\cot x\,\mathrm dx=\int(\csc^2x-1)\cot x\,\mathrm dx

\displaystyle=\int\csc^2x\cot x\,\mathrm dx-\int\cot x\,\mathrm dx

For the first integral, substitute
y=\cot x so that
\mathrm dy=-\csc^2x\,\mathrm dx. This leaves you with two standard integrals,


=\displaystyle-\int y\,\mathrm dy-\int\cot x\,\mathrm dx

=-\frac12y^2+\ln|\cot x+\csc x|+C

=-\frac12\cot^2x+\ln|\cot x+\csc x|+C
User Khaynes
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories