229k views
0 votes
Help integrate: cot^3(x)

User Stepaklots
by
8.6k points

1 Answer

5 votes

\displaystyle\int\cot^3x\,\mathrm dx=\int\cot^2x\cot x\,\mathrm dx=\int(\csc^2x-1)\cot x\,\mathrm dx

\displaystyle=\int\csc^2x\cot x\,\mathrm dx-\int\cot x\,\mathrm dx

For the first integral, substitute
y=\cot x so that
\mathrm dy=-\csc^2x\,\mathrm dx. This leaves you with two standard integrals,


=\displaystyle-\int y\,\mathrm dy-\int\cot x\,\mathrm dx

=-\frac12y^2+\ln|\cot x+\csc x|+C

=-\frac12\cot^2x+\ln|\cot x+\csc x|+C
User Khaynes
by
8.3k points