174k views
3 votes
How do I verify the identity: sec(t)+1/tan(t)=tan(t)/sec(t)-1

User Twsaef
by
8.3k points

1 Answer

3 votes

\bf \textit{Pythagorean Identities} \\ \quad \\ sin^2(\theta)+cos^2(\theta)=1 \\ \quad \\ 1+cot^2(\theta)=csc^2(\theta) \\ \quad \\ \boxed{1+tan^2(\theta)=sec^2(\theta)}\implies tan^2(\theta)=sec^2(\theta)-1\\\\ -----------------------------\\\\ \cfrac{sec(x)+1}{tan(x)}=\cfrac{tan(x)}{sec(x)-1}\\\\ -----------------------------\\\\


\bf \cfrac{sec(x)+1}{tan(x)}\cdot \cfrac{sec(x)-1}{sec(x)-1}\impliedby \textit{using the conjugate}\\\\ -----------------------------\\\\ recall\qquad \textit{difference of squares} \\ \quad \\ (a-b)(a+b) = a^2-b^2\qquad \qquad a^2-b^2 = (a-b)(a+b)\\\\ -----------------------------\\\\ thus\qquad \cfrac{sec^2(x)-1^2}{tan(x)sec(x)-1}\implies \cfrac{sec^2(x)-1}{tan(x)sec(x)-1} \\\\\\ \cfrac{\underline{tan^2(x)}}{\underline{tan(x)} sec(x)-1}\implies \cfrac{tan(x)}{sec(x)-1}
User Pidizzle
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories