181k views
3 votes
When plucked, the high E string on a guitar has a frequency of 330 cycles per second. What sine function represents this note when it is graphed with an amplitude of 1.5 units? Let x represent the number of seconds.

1 Answer

2 votes

\bf \qquad \qquad \qquad \qquad \textit{function transformations} \\ \quad \\ % function transformations for trigonometric functions \begin{array}{rllll} % left side templates f(x)=&{{ A}}sin({{ B}}x+{{ C}})+{{ D}} \\ \quad \\ \end{array}


\bf \begin{array}{llll} % right side info \bullet \textit{ stretches or shrinks}\\ \quad \textit{horizontally by amplitude } |{{ A}}|\\\\ \bullet \textit{ horizontal shift by }\frac{{{ C}}}{{{ B}}}\\ \qquad if\ \frac{{{ C}}}{{{ B}}}\textit{ is negative, to the right}\\ \qquad if\ \frac{{{ C}}}{{{ B}}}\textit{ is positive, to the left}\\ \end{array}


\bf \begin{array}{llll} \bullet \textit{vertical shift by }{{ D}}\\ \qquad if\ {{ D}}\textit{ is negative, downwards}\\ \qquad if\ {{ D}}\textit{ is positive, upwards}\\\\ \bullet \textit{function period or frequency}\\ \qquad \frac{2\pi }{{{ B}}}\ for\ cos(\theta),\ sin(\theta),\ sec(\theta),\ csc(\theta)\\ \qquad \frac{\pi }{{{ B}}}\ for\ tan(\theta),\ cot(\theta) \end{array}

now.. if the period/frequency is 330, then we know that
\bf \cfrac{2\pi }{B}=300

solve for B, and then plug it in the equation
and use the provided amplitude
User Hgwhittle
by
7.9k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories