439,260 views
4 votes
4 votes
Find (g∘w)(x)and (w∘g)(x)for g(x)=7x−4 and w(x)=x2−7x+3(g∘w)(x)=(w∘g)(x)=

User Manikanta Dornala
by
2.7k points

1 Answer

12 votes
12 votes

In order to calculate the composite function (gow)(x), that is, g(w(x)), we need to use w(x) as the input (value of x) in the function g(x).

So we have:


\begin{gathered} g(x)=7x-4 \\ g(w(x))=7w(x)-4 \\ g(w(x))=7(x^2-7x+3)-4 \\ g(w(x))=7x^2-49x+21-4 \\ g(w(x))=7x^2-49x+17 \end{gathered}

Now, calculating (wog)(x), we have:


\begin{gathered} w(x)=x^2-7x+3 \\ w(g(x))=g(x)^2-7g(x)+3 \\ w(g(x))=(7x-4)^2-7\cdot(7x-4)+3 \\ w(g(x))=49x^2-56x+16-49x+28+3 \\ w(g(x))=49x^2-105x+47 \end{gathered}

User Eloone
by
2.7k points