136k views
4 votes
I really stuck on trying to prove this

n
E r(r+1)(r+2)...(r+p-1)=(1/p+1)n(n+1)(n+2)...(n+p)
r=1

User Dave Morse
by
7.8k points

1 Answer

4 votes

\displaystyle\sum_(r=1)^nr(r+1)\cdots(r+p-1)

When
n=1,


\displaystyle\sum_(r=1)^1r(r+1)\cdots(r+p-1)=1(1+1)(1+2)\cdots(1+p-2)(1+p-1)=p!

Meanwhile, you have on the right


((1)(1+1)(1+2)\cdots(1+p-2)(1+p-1)(1+p))/(p+1)=(1)(1+1)(1+2)\cdots(p-1)(p)=p!

so the equality holds for
n=1.

Assume it holds for
n=k, i.e. that


\displaystyle\sum_(r=1)^kr(r+1)\cdots(r+p-1)=(k(k+1)(k+2)\cdots(k+p-1)(k+p))/(p+1)

Now for
n=k+1, you have


\displaystyle\sum_(r=1)^(k+1)r(r+1)\cdots(r+p-1)=\sum_(r=1)^kr(r+1)\cdots(r+p-1)+(k+1)(k+2)\cdots(k+1+p-1)

=\displaystyle(k(k+1)(k+2)\cdots(k+p-1)(k+p))/(p+1)+(k+1)(k+2)\cdots(k+1+p-2)(k+1+p-1)

=\displaystyle(k(k+1)(k+2)\cdots(k+p-1)(k+p))/(p+1)+(k+1)(k+2)\cdots(k+p-1)(k+p)

=\left(\frac k{p+1}+1\right)(k+1)(k+2)\cdots(k+p-1)(k+p)

=(k+p+1)/(p+1)(k+1)(k+2)\cdots(k+p-1)(k+p)

=((k+1)(k+2)\cdots(k+p-1)(k+p)(k+p+1))/(p+1)

as required.
User Mohan Rex
by
7.3k points

No related questions found