76.5k views
0 votes
Csc (2sin^-1(-12/13))
that is 2 times inverse sin of -12/13

User Beso
by
7.9k points

1 Answer

3 votes
Answer:
-(169)/(120)

I'm assuming you mean this:


cosec(2sin^(-1)((-12)/(13)))

Recall what the cosecant function represents. It is the reciprocal of a sine function, and is often written in this form:


(1)/(sinx)

So, using the sine relationship:


cosec(2sin^(-1)((-12)/(13))) = (1)/(sin(2sin^(-1)((-12)/(13))))

Let
u = sin^(-1)((-12)/(13))

cosec(2sin^(-1)((-12)/(13))) = (1)/(sin(2u))

= (1)/(2sinu \cdot cosu)

= (1)/(2sin(sin^(-1)((-12)/(13))) \cdot cos(sin^(-1)((-12)/(13))))

= \frac{1}{(-24)/(13) \cdot \sqrt{1 - ((-12)/(13))^(2)}}

= (1)/((-24)/(13)) \cdot \frac{1}{\sqrt{1 - (144)/(169)}}

= -(13)/(24) \cdot \frac{1}{\sqrt{(25)/(169)}}

= -(13)/(24) \cdot (1)/((5)/(13))

= -(13)/(24) \cdot (13)/(5)

= -(169)/(120)
User Dimodi
by
8.1k points