Answer: x = 10, y = -2 ; → Write as: (10, -2) .
_______________________________________________
Step-by-step explanation:
_______________________________________________
Given:
_______________________________________________
x = 10 ;
3x + 5y = 20 ;
_______________________________________________
→ Plug in "10" for the value of "x" in the second equation:
_______________________________________________
3*(10) + 5y = 20 ; Solve for "y" ;
_______________________________________________
↔ 5y + 3*(10) = 20 ;
5y + 30 = 20 ;
________________________________________________
Subtract "30" from EACH side of the equation:
________________________________________________
5y + 30 − 30 = 20 − 30 ;
5y = - 10 ;
__________________________________________________
→ Divide EACH SIDE of the equation by "5" ; to isolate "y" on one side of the equation; and to solve for "y" ;
___________________________________________________
5y / 5 = - 10 / 5 ;
___________________________________________________
y = - 2;
And we are given: x = 10 ;
_________________________________________________
→ Let us check our answer, by substituting "10" for "x"; and "-2" for "y" ; in the second equation given; to see if the equation holds true:
__________________________________________________
Given: ... 3x + 5y = 20 ;
Substitute: 3*(10) + 5*(-2) = ? 20 ?? ;
__________________________________________________
30 + (-10) = ? 20 ?? ;
__________________________________________________
30 − 10 = ? 20 ? Yes; "30 − 10 = 20 !!! " .
__________________________________________________
So, " x = 10 , y = -2 " ; ↔ write as: " (10, -2) " .
__________________________________________________