Answer:
To find the volume of the cylinder.
Radius is 8 km
Height is 4 km
Step-by-step explanation:
we know that,
Volume is equal to product of area of the base and height.
Area of the base is,
![\pi r^2](https://img.qammunity.org/qa-images/2023/formulas/mathematics/high-school/olbzc0y3uc87b8ggatcn.png)
where r is the radius of the base circle.
Put r=8
we get,
![=\pi*8^2](https://img.qammunity.org/qa-images/2023/formulas/mathematics/college/76ayzfgy1yacm2cytduu.png)
Put pi=3.14, we get
![=3.14*64](https://img.qammunity.org/qa-images/2023/formulas/mathematics/college/ywafvbj22tj441ewulwb.png)
![=200.96\text{ km}^2](https://img.qammunity.org/qa-images/2023/formulas/mathematics/college/nr553jipbprh1o0xqvnf.png)
We get,
Volume is,
![=200.96*4](https://img.qammunity.org/qa-images/2023/formulas/mathematics/college/yaba8znfya5nqkppiugb.png)
![=803.84](https://img.qammunity.org/qa-images/2023/formulas/mathematics/college/gvuw5y9v904mo520n7ce.png)
Round to nearest tenth, we get,
![803.84\approx803.8](https://img.qammunity.org/qa-images/2023/formulas/mathematics/college/h2kvdjvhejwiq1ppc7fs.png)
Answer is:
![803.8\text{ km}^3](https://img.qammunity.org/qa-images/2023/formulas/mathematics/college/ngrg6ju8w0zqtrpkk249.png)