122k views
4 votes
Integrate ln(3x)^2dx

User Strudel
by
6.9k points

1 Answer

5 votes

\ln(3x)^2=2\ln(3x)

Take
y=3x, so that
\frac{\mathrm dy}3=\mathrm dx, and you have


\displaystyle\int\ln(3x)^2\,\mathrm dx=\frac23\int\ln y\,\mathrm dy

Integrate by parts, setting
u=\ln y and
\mathrm dv=\mathrm dy, which give
\mathrm du=\frac{\mathrm dy}y and
v=y. Then


\displaystyle\frac23\int\ln y\,\mathrm dy=\frac23\left(y\ln y-\int\frac yy\,\mathrm dy\right)=\frac23y\ln y-\frac23y+C

which in terms of
x is


\displaystyle\frac23y\ln (3x)-\frac23(3x)+C

\displaystyle\frac23y\ln x-2x+C

where the last term uses the property that
\ln(ab)=\ln a+\ln b, and the
\frac23\ln3 term is absorbed into
C.
User Meliah
by
7.5k points