Answer:
![2a^3b^2\sqrt[3]{3a}](https://img.qammunity.org/2022/formulas/mathematics/high-school/nqesxk92mczl86ibs4yuia0siqgcuj1ou6.png)
Explanation:
Use the following rules for exponents:
![a^m*a^n=a^(m+n)\\\\\sqrt[3]{x^3}=x](https://img.qammunity.org/2022/formulas/mathematics/high-school/h50bmrm3zxiuuyfoo2t2d3bhqr7p5hg66j.png)
Simplify 24. Find two factors of 24, one of which should be a perfect cube:
![8*3=24\\\\2^3=8](https://img.qammunity.org/2022/formulas/mathematics/high-school/mmw4ge6hapa3hv4l58uxgdmhr6qhop2mul.png)
Insert:
![\sqrt[3]{2^3*3a^(10)b^6}](https://img.qammunity.org/2022/formulas/mathematics/high-school/kwl470c5lw77ftob3w8d6xmdaa0aet2lht.png)
Now split the exponents. Split 10 into as many 3's as possible:
![10=3+3+3+1](https://img.qammunity.org/2022/formulas/mathematics/high-school/qzwle9dvgjev57u35lewqn2lruzhxbrzst.png)
Insert as exponents:
![\sqrt[3]{2^3*3*a^3*a^3*a^3*a^1*b^6}](https://img.qammunity.org/2022/formulas/mathematics/high-school/5a8z2jwhdrlr79y3km225bex8vknyasgwh.png)
Split 6 into as many 3's as possible:
![6=3+3](https://img.qammunity.org/2022/formulas/mathematics/high-school/e1wluy9hpfktmuupfdfg4iz6ktu73o8qls.png)
Insert as exponents:
![\sqrt[3]{2^3*3*a^3*a^3*a^3*a^1*b^3*b^3}](https://img.qammunity.org/2022/formulas/mathematics/high-school/zucjhthqou02l5q7r5h5vaw0ls4e6zciba.png)
Now simplify. Any terms with an exponent of 3 will be moved out of the radical (rule #2):
![2\sqrt[3]{3*a^3*a^3*a^3*a^1*b^3*b^3}\\\\\\2*a*a*a\sqrt[3]{3*a^1*b^3*b^3}\\\\\\2*a*a*a*b*b\sqrt[3]{3*a^1}](https://img.qammunity.org/2022/formulas/mathematics/high-school/407jfjl29q8artnnwuy04powkfyj86j2mn.png)
Simplify:
![2a^3b^2\sqrt[3]{3a}](https://img.qammunity.org/2022/formulas/mathematics/high-school/nqesxk92mczl86ibs4yuia0siqgcuj1ou6.png)
:Done