220k views
3 votes
SOLVE. integration of (1-v) /(1+v^2)

User Renno
by
7.7k points

1 Answer

6 votes

\displaystyle\int(1-v)/(1+v^2)\,\mathrm dv=\int(\mathrm dv)/(1+v^2)-\int\frac v{1+v^2}\,\mathrm dv

The first integral is already standard and has an antiderivative in terms of
\arctan v. For the second integral, take
w=1+v^2 so that
\frac{\mathrm dw}2=v\,\mathrm dv. Then


\displaystyle\int(\mathrm dv)/(1+v^2)-\int\frac v{1+v^2}\,\mathrm dv=\arctan v-\frac12\int\frac{\mathrm dw}w

=\arctan v-\frac12\ln|w|+C

=\arctan v-\frac12\ln(1+v^2)+C
User Mariatta
by
8.4k points