174k views
0 votes
Find the modulus and argument of the complex number in the picture

Find the modulus and argument of the complex number in the picture-example-1

1 Answer

2 votes
Since
e^(ix)=\cos x+i\sin x, you have


((\sin x-i\cos x)^3)/((\cos x+i\sin x)^5)=((-ie^(ix))^3)/((e^(ix))^5)=(ie^(3ix))/(e^(5ix))=ie^(-2ix)

So,
|ie^(-2ix)|=|e^(-2ix)|=1 and the argument is
-2x.
User Redoubts
by
5.9k points