212k views
2 votes
Evaluate the integral by changing to polar coordinatesye^x dA, where R is in the first quadrant enclosed by the circle x^2+y^2=25

1 Answer

3 votes

\displaystyle\iint_Rye^x\,\mathrm dA=\int_(\theta=0)^(\theta=\pi/2)\int_(r=0)^(r=5)r^2\sin\theta e^(r\cos\theta)\,\mathrm dr\,\mathrm d\theta

which follows from the usual change of coordinates via


\begin{cases}\mathbf x(r,\theta)=r\cos\theta\\\mathbf y(r,\theta)=r\sin\theta\end{cases}

and Jacobian determinant


|\det J|=\left|\begin{vmatrix}\mathbf x_r&\mathbf x_\theta\\\mathbf y_r&\mathbf y_\theta\end{vmatrix}\right|=|r|

Swap the order, so that the integral is


\displaystyle\int_(r=0)^(r=5)\int_(\theta=0)^(\theta=\pi/2)r^2\sin\theta e^(r\cos\theta)\,\mathrm d\theta\,\mathrm dr

and now let
\sigma=r\cos\theta, so that
\mathrm d\sigma=-r\sin\theta. Now, you have


\displaystyle\int_(r=0)^(r=5)\int_(\sigma=0)^(\sigma=r)re^\sigma\,\mathrm d\sigma\,\mathrm dr=\int_(r=0)^(r=5)r(e^r-1)\,\mathrm dr=4e^5-\frac{23}2
User PhilLab
by
5.7k points