147k views
4 votes
How to graph y=-4cos(x )+3

User Kiwikodes
by
7.8k points

1 Answer

4 votes

\bf \qquad \qquad \qquad \qquad \textit{function transformations} \\ \quad \\ % function transformations for trigonometric functions \begin{array}{rllll} % left side templates f(x)=&{{ A}}cos({{ B}}x+{{ C}})+{{ D}} \\ \quad \\ \end{array}


\bf \begin{array}{llll} % right side info \bullet \textit{ stretches or shrinks}\\ \quad \textit{horizontally by amplitude } |{{ A}}|\\\\ \bullet \textit{ horizontal shift by }\frac{{{ C}}}{{{ B}}}\\ \qquad if\ \frac{{{ C}}}{{{ B}}}\textit{ is negative, to the right}\\ \qquad if\ \frac{{{ C}}}{{{ B}}}\textit{ is positive, to the left}\\ \end{array}


\bf \begin{array}{llll} \bullet \textit{vertical shift by }{{ D}}\\ \qquad if\ {{ D}}\textit{ is negative, downwards}\\ \qquad if\ {{ D}}\textit{ is positive, upwards}\\\\ \bullet \textit{function period}\\ \qquad \frac{2\pi }{{{ B}}}\ for\ cos(\theta),\ sin(\theta),\ sec(\theta),\ csc(\theta)\\ \qquad \frac{\pi }{{{ B}}}\ for\ tan(\theta),\ cot(\theta) \end{array}

now...let's take a peek a this equation then
\bf \begin{array}{llllll} y=&-4cos(x)&+3\\ &\ \uparrow &\uparrow \\ &A&D \end{array}

so... is really just the graph of cos(x), with that amplitude and shifted that much
User Sergey Gurin
by
8.4k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories