25.0k views
1 vote
An arithmetic sequence is defined by the general term tn = 19 - (n - 1)18, where n ∈N and n ≥ 1. What is the recursive formula of the sequence?

User Moamen
by
6.3k points

2 Answers

2 votes

t_n=19-18(n-1)

t_(n-1)=19-18(n-2)

\implies t_n-t_(n-1)=-18(n-1)+18(n-2)

\implies t_n=t_(n-1)-18n+18+18n-36

\implies t_n=t_(n-1)-18

So the recursive formula is


\begin{cases}t_1=19\\t_n=t_(n-1)-18&\text{for }n>1\end{cases}
User BCsongor
by
6.0k points
5 votes

Answer:


t_1= \text{19 for n =1}


t_n=t_(n-1)-18 \text{ for n }> 1

Explanation:

Given : General term of arithmetic sequence :
t_n=19-18(n-1)

To Find: the recursive formula of the sequence

Solution :


t_n=19-18(n-1)

To find the recursive formula of the sequence .


t_(n-1)=19-18(n-1-1)


t_(n-1)=19-18(n-2)

So, the recursive formula is :


t_n-t_(n-1)=19-18(n-1)-[19-18(n-2)]


t_n-t_(n-1)=19-18n+18-{19-18n+36]


t_n-t_(n-1)=19-18n+18-19+18n-36


t_n-t_(n-1)=-18


t_n=t_(n-1)-18

Hence the recursive formula of the sequence is :


t_1= \text{19 for n =1}


t_n=t_(n-1)-18 \text{ for n }> 1

User Tyty
by
6.2k points