169k views
2 votes
Explain how to get that answer!!

Explain how to get that answer!!-example-1
User Jett
by
5.8k points

1 Answer

0 votes
We need to simplify
( √(14x^3) )/( √(18x) )

First lets factor
√(14x^3)


√(14x^3) =
√(14) √(x^3)

√(14) = √(2) √(7) by applying the radical rule
\sqrt[n]{ab} = \sqrt[n]{a} \sqrt[n]{b}

√(x^3) = x^(3/2) By applying the radical rule
\sqrt[n]{x^m} = x^(m/n)

So

√(14x^3) =
√(14) √(x^3) =
√(2) √(7)x^(3/2)

Now let's factor
√(18x)
By applying the radical rule
\sqrt[n]{ab} = \sqrt[n]{a} \sqrt[n]{b},

√(18x) = √(18) √(x)

√(18) = √(2) * 3

So
√(18x) =
√(2)*3 √(x)

So
( √(14x^3) )/( √(18x) ) =
( √(2) √(7) x^(3/2) )/( √(2)*3 √(x) )

We know that
\sqrt[n]{x} = x^(1/n) so
√(x) = x^(1/2)

We now have
( √(2) √(7) x^(3/2) )/( √(2)*3 √(x)) = ( √(2) √(7) x^(3/2) )/( √(2)*3x^(1/2))

We know that
(x^a)/(x^b) = x^(a-b)
So
(x^(3/2))/(x^(1/2)) = x^(3/2 - 1/2) = x

We now got
( √(2) √(7) x^(3/2) )/( √(2)*3x^(1/2)) = ( √(2) √(7) x )/( √(2)*3)

We can notice that the numerator and the denominator both got √2 in a multiplication, so we can simplify them, and we get:

( √(2) √(7) x )/( √(2)*3) = ( √(7)x )/(3)


All in All, we get
( √(14x^3) )/( √(18x) ) =
( √(7)x )/(3)

Hope this helps! :D


User Flyerz
by
5.6k points