86,558 views
38 votes
38 votes
Use the he map to determine the approximate area of the Bermuda Triangle

Use the he map to determine the approximate area of the Bermuda Triangle-example-1
User Sublime
by
3.2k points

1 Answer

11 votes
11 votes

Lets fill out the matrix with the corresponding coordinates.

The coordinates of Miami are (0, 0)

The coordinates of Bermuda are (900, 500)

The coordinates of San Juan, Puerto Rico are (900, -500)

Then, the matrix A is:


\begin{bmatrix}{0} & 0{} & {1} \\ {900} & {500} & {1} \\ {900} & {-500} & {1}\end{bmatrix}

Now to find the determinant of a 3x3 matrix, the formula is:


\begin{gathered} X=\begin{bmatrix}{a} & {b} & {c} \\ {d} & {e} & {f} \\ {g} & {h} & {i}\end{bmatrix} \\ \det X=a\cdot\det \begin{bmatrix}{e} & {f} \\ {h} & {i}\end{bmatrix}-b\cdot\det \begin{bmatrix}{d} & {f} \\ {g} & {i}\end{bmatrix}+c\cdot\det \begin{bmatrix}{d} & {e} \\ {g} & {h}\end{bmatrix} \end{gathered}

But since in this case, a = 0 and b = 0, the determinant of the metrix A is:


\det A=1\cdot\det \begin{bmatrix}{900} & {500} \\ {900} & {-500}\end{bmatrix}

Then the determinant of A is:


\det A=1(900\cdot(-500)-500\cdot900)=-900,000

And since the approximate area is :


(1)/(2)|\det A|

Then:


\text{Area}=(1)/(2)|-900,000|=450,000mi

User Astorga
by
3.6k points