70.2k views
4 votes
Que is on pic.i can't able to type in text.

Que is on pic.i can't able to type in text.-example-1
User Akaedintov
by
6.2k points

1 Answer

2 votes
It's not difficult to compute the values of
A and
B directly:


A=\displaystyle\int_1^(\sin\theta)(\mathrm dt)/(1+t^2)=\tan^(-1)t\bigg|_(t=1)^(t=\sin\theta)

A=\tan^(-1)(\sin\theta)-\frac\pi4


B=\displaystyle\int_1^(\csc\theta)(\mathrm dt)/(t(1+t^2))=\int_1^(\csc\theta)\left(\frac1t-\frac t{1+t^2}\right)\,\mathrm dt

B=\left(\ln|t|-\frac12\ln|1+t^2|\right)\bigg|_(t=1)^(t=\csc\theta)

B=\ln\left|(\csc\theta)/(√(1+\csc^2\theta))\right|+\frac12\ln2

Let's assume
0<\theta<\pi, so that
|\csc\theta|=\csc\theta.

Now,


\Delta=\begin{vmatrix}A&amp;A^2&amp;B\\e^(A+B)&amp;B^2&amp;-1\\1&amp;A^2+B^2&amp;-1\end{vmatrix}

\Delta=A\begin{vmatrix}B^2&amp;-1\\A^2+B^2&amp;-1\end{vmatrix}-e^(A+B)\begin{vmatrix}A^2&amp;B\\A^2+B^2&amp;-1\end{vmatrix}+\begin{vmatrix}A^2&amp;B\\B^2&amp;-1\end{vmatrix}

\Delta=A(-B^2+A^2+B^2)-e^(A+B)(-A^2-A^2B-B^3)+(-A^2-B^3)

\Delta=A^3-A^2-B^3+e^(A+B)(A^2+A^2B+B^3)

There doesn't seem to be anything interesting about this result... But all that's left to do is plug in
A and
B.
User TheDarkKnight
by
5.7k points