Answer:
Or 1
Explanation:
![\left[\begin{array}{ccc}Sine&(SinA)/(A)\\Rule&(SinB)/(B)\\&(SinC)/(C) \end{array}\right]](https://img.qammunity.org/2018/formulas/mathematics/high-school/vclpzbiprwtbme0td2u9gb785ppapska4s.png)
![\left[\begin{array}{ccc}Cos&(CosA)/(A)\\Rule&(CosB)/(B)\\&(CosC)/(C) \end{array}\right]](https://img.qammunity.org/2018/formulas/mathematics/high-school/gwzjey39col3jrcyjm8e5htvfn7jw140pc.png)
![\left[\begin{array}{ccc}(CosA)/(SinA)=(CosB)/(SinB)=(CosC)/(SinC) \end{array}\right]](https://img.qammunity.org/2018/formulas/mathematics/high-school/folggenxtejsdtau5i5fd0tbluiltl2g6p.png)
![\left[\begin{array}{ccc}CosA&=(3)/(4.24)\\CosB&=(3)/(4.24)\end{array}\right]](https://img.qammunity.org/2018/formulas/mathematics/high-school/7irlojwaxazc5ogtdzzlusqjzvxw6vbh47.png)
Additional Answers:
Area: T = 4.5
Perimeter: p = 10.24
Semiperimeter: s = 5.12
Angle ∠ A = α = 89.929° = 89°55'43″ = 1.57 rad
Angle ∠ B = β = 45.036° = 45°2'8″ = 0.786 rad
Angle ∠ C = γ = 45.036° = 45°2'8″ = 0.786 rad
Height: ha = 2.123
Height: hb = 3
Height: hc = 3
Median: ma = 2.123
Median: mb = 3.352
Median: mc = 3.352
Inradius: r = 0.879
Circumradius: R = 2.12
Vertex coordinates: A[3; 0] B[0; 0] C[2.996; 3]
Centroid: CG[1.999; 1]
Coordinates of the circumscribed circle: U[1.5; 1.498]
Coordinates of the inscribed circle: I[2.12; 0.879]
Exterior(or external, outer) angles of the triangle:
∠ A' = α' = 90.071° = 90°4'17″ = 1.57 rad
∠ B' = β' = 134.964° = 134°57'52″ = 0.786 rad
∠ C' = γ' = 134.964° = 134°57'52″ = 0.786 rad