33.1k views
0 votes
Verify the identity: 2cosx(sin3x-sinx) = sin4x

User Xeos
by
8.1k points

1 Answer

5 votes

\bf \qquad \qquad \textit{triple-angle identity}\\\\ sin(3\theta)=3sin(\theta)-4sin^3(\theta)\\\\ \left. \qquad \qquad \right.\textit{quad-angle identity}\\\\ sin(4\theta)= \begin{cases} 8sin(\theta)cos^3(\theta)=4sin(\theta)cos(\theta)\\\\ \boxed{4sin(\theta)cos(\theta)-8sin^3(\theta)cos(\theta)} \end{cases}\\\\ -----------------------------\\\\ 2cos(x)[sin(3x)-sin(x)]=sin(4x)\\\\ -----------------------------\\\\


\bf 2cos(x)[sin(3x)-sin(x)]\implies 2cos(x)[3sin(x)-4sin^3(x)-sin(x)] \\\\\\ 2cos(x)[2sin(x)-4sin^3(x)]\implies \boxed{4sin(x)cos(x)-8sin^3(x)cos(x)}
User Imochoa
by
8.0k points

Related questions

asked Apr 25, 2024 56.9k views
David DV asked Apr 25, 2024
by David DV
8.8k points
1 answer
0 votes
56.9k views
asked May 8, 2023 212k views
ReynierPM asked May 8, 2023
by ReynierPM
8.2k points
1 answer
5 votes
212k views