212k views
1 vote
Can someone please help me with my math homework?

Can someone please help me with my math homework?-example-1
User Vibert
by
8.4k points

1 Answer

2 votes
For asymptotes, we need to consider when a function becomes undefined.
Such examples include x = 0 as the denominator.

Vertical asymptotes are merely stated when an x-ordinate allows the function to become undefined. They are the easiest of the two to solve. Let's consider the first example:


y = (1)/(x) - 3

In this case, we know that x is the denominator. So when the x-ordinate hits 0, there are no y-values to associate with the function. Hence, we know there is a vertical asymptote at x = 0.

Horizontal asymptotes are defined when a certain value of y makes the function undefined. They are usually harder to find and can be time-consuming. The easiest way to identify horizontal asymptotes is by taking limits or dividing a function.

Notice how our first section is 1/x. For harder polynomic functions, we would do something called long division of polynomials. But for this instance, let's divide the top and bottom of the fraction by x and take the limit as x approaches positive and negative infinite.

After division, we would get something like this:


y = (1/x)/(1) - 3

Now, as x approaches positive infinity, our fraction would get closer and closer to zero, so at x = infinity, our y value would be -3
At x = negative infinity, our y value would remain as -3.

So at x = infinity, we would yield y = -3, which is our horizontal asymptote.

So, VA: x = 0
HA: y = -3
User Tim Meyer
by
8.0k points

No related questions found