![\bf a^{\frac{{ n}}{{ m}}} \implies \sqrt[{ m}]{a^( n)} \qquad \qquad \sqrt[{ m}]{a^( n)}\implies a^{\frac{{ n}}{{ m}}}\\\\ -----------------------------\\\\ 7^{(19)/(4)}\cdot \sqrt[a]{7^b}=7^{(9)/(4)}\cdot √(7^3)\implies 7^{(19)/(4)}\cdot \sqrt[a]{7^b}=7^{(9)/(4)}\cdot \sqrt[2]{7^3} \\\\\\ 7^{\cfrac{}{}(19)/(4)}\cdot 7^{\cfrac{}{}(b)/(a)}=7^{\cfrac{}{}(9)/(4)}\cdot 7^{\cfrac{}{}(3)/(2)}\implies 7^{\cfrac{}{}(19)/(4)+(b)/(a)}=7^{\cfrac{}{}(9)/(4)+(3)/(2)}](https://img.qammunity.org/2018/formulas/mathematics/high-school/iecx9lyvte6pm0m1o1rz8c921q9k3hdgc9.png)

now... if you multiply the numerator and denominator by some same number, the fraction still holds true, for example -3/3 simplified is just -1/1
or -1,000,000/1,000,000 simplified is also -1/1
so.. .the possible values, can be anything, so long the numerator and denominator maintain that ratio