467,595 views
10 votes
10 votes
Decide if each of the following explicit rules listed in the table below represent the given sequence.

Decide if each of the following explicit rules listed in the table below represent-example-1
User Yuqizhang
by
3.0k points

1 Answer

15 votes
15 votes

a) Yes

b) No

c) No

d) No

Step-by-step explanation:

We check the options for the data set given:


f(1)\text{ = 9, f(2) = 45, f(3) = 225, f(4) = 1125}


\begin{gathered} f(n)=9(5)^(n-1) \\ \text{when n = 1} \\ f(1)=9(5)^{0\text{ }}\text{ = 9} \\ \text{when n =2} \\ f(2)\text{ =}9(5)^{2-1\text{ }}=\text{ 9(5) = 45} \\ \text{when n = 3} \\ f(3)\text{ =}9(5)^{3-1\text{ }}=9(25)\text{ = 225 } \\ \text{when x = 4} \\ f(3)\text{ = }9(5)^{4-1\text{ }}=9(125)\text{ = 1125 (correct)} \\ So,\text{ Yes} \end{gathered}
\begin{gathered} f(n)=5(9)^(n-1) \\ \text{when n = 1} \\ f(1)=5(9)^(1-1)=5(9)^0\text{ = 5} \\ \text{when = 2} \\ f(2)=5(9)^(2-1)=5(9)^1\text{ = 45} \\ \text{when n = 3} \\ f(3)=5(9)^(3-1)=5(9)^2\text{ = }405\text{ (wrong)} \\ \text{so, No} \end{gathered}
\begin{gathered} f(n)=5(5)^(n-1) \\ \text{when n = 1} \\ f(1)=5(5)^(1-1)=5(5)^0\text{ = 5} \\ \text{when n = 2} \\ f(2)\text{ = }5(5)^(2-1)=5(5)\text{ = 25 (wrong)} \\ so,\text{ No} \end{gathered}
\begin{gathered} f(n)=9(9)^(n-1) \\ \text{when n = 1} \\ f(1)\text{ = }9(9)^(1-1)=9(9)^0\text{ = 9} \\ \text{when n = 2} \\ f(2)\text{ = }9(9)^(2-1)=9(9)^1\text{ = 81 (wrong)} \\ so,\text{ No} \end{gathered}

User Umm
by
2.7k points