59.0k views
5 votes
Two triangles can be formed with the given information. Use the Law of Sines to solve the triangles. A = 56°, a = 16, b = 17

User Nowhere
by
5.8k points

2 Answers

5 votes
Law of Sines: sinA/a = sinB/b

so sinB = b * sinA/a = 17 * sin56/16 = 0.88

B = 61.7° or 118.3°


To solve the triangles, C = 180 - A - B

so C = 180 - 56 - 61.7 = 62.3
°; or

C = 180 - 56 - 118.3 = 5.7
°

User Michael Salmon
by
5.6k points
1 vote

Answer:

Triangle 1:


A=56^\circ,\ B=62^\circ,\ C=62^\circ


a=16,\ b=17,\ c=17

Triangle 2:


A=56^\circ,\ B=118^\circ,\ C=6^\circ


a=16,\ b=17,\ c=2

Explanation:

Given:
A=56^\circ, a=16, b=17

Sine law:


(\sin A)/(a)=(\sin B)/(b)=(\sin C)/(c)

Substitute the given values into law


(\sin 56^\circ)/(16)=(\sin B)/(17)=(\sin C)/(c)


(\sin 56^\circ)/(16)=(\sin B)/(17)


B=62^\circ\ \text{ or }118^\circ

Possible value of C


A+B+C=180^\circ


C=62^\circ\ \text{ or }6^\circ

Triangle 1:


A=56^\circ,\ B=62^\circ,\ C=62^\circ


a=16,\ b=17,\ c=17

Triangle 2:


A=56^\circ,\ B=118^\circ,\ C=6^\circ


a=16,\ b=17,\ c=2

User Evgenii Bazhanov
by
5.6k points