68.0k views
5 votes
Sin(x2 y2 da r , where r is the region in the first quadrant between the circles with center the origin and radii 1 and 5

User Thyraz
by
8.7k points

1 Answer

2 votes
I assume there's a plus sign missing above...

Convert to polar coordinates, using


\begin{cases}x(r,\theta)=r\cos\theta\\y(r,\theta)=r\sin\theta\end{cases}

Then the Jacobian is


(\partial(x,y))/(\partial(r,\theta))=\begin{vmatrix}x_r&y_r\\x_\theta&y_\theta\end{vmatrix}=\begin{vmatrix}\cos\theta&\sin\theta\\r\sin\theta&-r\cos\theta\end{vmatrix}=-r

Then


\mathrm dA=\mathrm dx\,\mathrm dy=|-r|\,\mathrm dr\,\mathrm d\theta=r\,\mathrm dr\,\mathrm d\theta

so the integral can be written as


\displaystyle\iint_R\sin(x^2+y^2)\,\mathrm dA=\int_0^(\pi/2)\int_1^5r\sin(r^2)\,\mathrm dr\,\mathrm d\theta

Let
s=r^2, so that
\frac{\mathrm ds}2=r\,\mathrm dr.


\displaystyle\frac12\int_0^(\pi/2)\int_1^(25)\sin s\,\mathrm ds\,\mathrm d\theta=-\frac12(\cos25-\cos1)\int_0^(\pi/2)\mathrm d\theta=\frac\pi4(\cos1-\cos25)
User Disti
by
8.4k points