Answer:
the charge on the object is 71.043×10^-20 C and the number of electron is 4.44
Step-by-step explanation:
from coulumbs law, The force that is acting over both charge can be computed as
F=( kq1q2)/r^2..............eqn(1)
Where
F=electrostatic force= 3.89 x 10-21 N
k= column constant= 9 x 10^9 Nm^2/C^2
q1 and q2= magnitude of the charges
r= distance between the charges= 1.08 x 10-3 m.
Since both charges are experiencing the same force, eqn(1) can be written as
F=( kq^2)/r^2.
We can make q subject of the formula
q= √(Fr^2)/k
= √[(3.89 x 10^-21× (1.08 x 10^-3)^2]/8.99 x 10^9
q= 71.043×10^-20 C
Hence, the charge is 71.043×10^-20 C
From quantization law, the number of electron can be computed as
N=q/e
Where
N= number of electron
q= charges
=1.6×10^-19C
N=71.043×10^-20/1.6×10^-19
=4.44
Hence, the charge on the object is 71.043×10^-20 C and the number of electron is 4.44