500,788 views
18 votes
18 votes
Select the correct answer from the drop-down menu.The answer choices are in the black box.....which one is it?

Select the correct answer from the drop-down menu.The answer choices are in the black-example-1
User Clemens Valiente
by
3.0k points

1 Answer

10 votes
10 votes

ANSWER

C and D

Step-by-step explanation

Step 1: Given that:


C\text{ = }\begin{bmatrix}{2} & 1{} & {} \\ {1} & {}2 & {} \\ {2} & {1} & \end{bmatrix}\text{ and D = }\begin{bmatrix}{\sqrt[]{4}} & 1{} & {} \\ {1} & {}\sqrt[]{4} & {} \\ {\sqrt[]{4}} & {1} & \end{bmatrix}

Step 2: Simplify matrix D


\begin{gathered} \text{D = }\begin{bmatrix}{\sqrt[]{4}} & 1{} & {} \\ {1} & {}\sqrt[]{4} & {} \\ {\sqrt[]{4}} & {1} & \end{bmatrix}\text{ = }\begin{bmatrix}{2} & 1{} & {} \\ {1} & {}2 & {} \\ {2} & {1} & \end{bmatrix}\text{ since }\sqrt[]{4}\text{ = 2.} \\ \end{gathered}

Hence, matrices C and D are equal.

User Tulsi
by
2.8k points