I am assuming you want to prove:
csc(x)/[1 - cos(x)] = [1 + cos(x)]/sin^3(x).
If we multiply the LHS by [1 + cos(x)]/[1 + cos(x)], we get:
LHS = csc(x)/[1 - cos(x)]
= {csc(x)[1 + cos(x)]/{[1 + cos(x)][1 - cos(x)]}
= {csc(x)[1 + cos(x)]}/[1 - cos^2(x)], via difference of squares
= {csc(x)[1 + cos(x)]}/sin^2(x), since sin^2(x) = 1 - cos^2(x).
Then, since csc(x) = 1/sin(x):
LHS = {csc(x)[1 + cos(x)]}/sin^2(x)
= {[1 + cos(x)]/sin(x)}/sin^2(x)
= [1 + cos(x)]/sin^3(x)
= RHS.
I hope this helps!