Okay, here we have this:
Moving a point z units up is equivalent to: (x, y) --> (x, y+z)
And moving a point z units to the left is equivalent to: (x, y) --> (x-z, y)
In this case we translated 2 unit up, and 1 unit left, so the points change is:
(x,y) ---> (x-1, y+2)
So the new points are:
A: (-4,-2) ---> A': (-5,0)
B: (-5,3) ----> B': (-6,5)
C: (6,2) -----> C': (5,4)
D: (9,-1) -----> D': (8,1)
The vertices of the new cuadrilateral are A'(-5,0), B'(-6,5), C'(5,4), D'(8,1)