181k views
4 votes
Whats the intrgral of
\int (x^2+x-3)/((x^3+x^2-4x-4)^2)

User Stam
by
8.2k points

1 Answer

4 votes

\displaystyle\int(x^2+x-3)/((x^3+x^2-4x-4)^2)\,\mathrm dx

Notice that
x^3+x^2-4x-4=x^2(x+1)-4(x+1)=(x-2)(x+2)(x+1). Decompose the integrand into partial fractions:


(x^2+x-3)/((x-2)^2(x+2)^2(x+1)^2)

=\frac1{3(x+1)}-(11)/(32(x+2))-\frac1{3(x+1)^2}-\frac1{16(x+2)^2}+\frac1{96(x-2)}+\frac1{48(x-2)^2}

Integrating term-by-term, you get


\displaystyle\int(x^2+x-3)/((x^3+x^2-4x-4)^2)\,\mathrm dx

=-\frac1{48(x-2)}+\frac1{3(x+1)}+\frac1{16(x+2)}+\frac1{96}\ln|x-2|+\frac13\ln|x+1|-(11)/(32)\ln|x+2|+C
User Flatliner DOA
by
8.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories