102k views
4 votes
Laplace of sin^3(2t)

User Karol S
by
6.8k points

1 Answer

2 votes

\sin^32t=\sin2t\sin^22t

Recall that
\sin^2x=\frac{1-\cos2x}2:


\sin^32t=\sin2t\frac{1-\cos4t}2

\sin^32t=\frac12\sin2t-\frac12\sin2t\cos4t

Now recall that
\sin x\cos y=\frac{\sin(x+y)+\sin(x-y)}2, which gives


\sin^32t=\frac12\sin2t-\frac14(\sin6t+\sin(-2t))

\sin^32t=\frac12\sin2t-\frac14\sin6t-\frac14\sin(-2t)

\sin^32t=\frac34\sin2t-\frac14\sin6t

So,


\mathcal L_s\{\sin^32t\}=\frac34\frac2{s^2+4}-\frac14\frac6{s^2+36}=(48)/(s^4+40s^2+144)
User Evgeniy Mikhalev
by
8.6k points