20.2k views
0 votes
Suppose a bag contains 8 white chips and 2 black chips. What is the probability of randomly choosing a white chip, not replacing it, and then randomly choosing another white chip?

A. 1/25
B. 28/45
C. 1/45
D. 16/25

User Carmelia
by
7.8k points

2 Answers

5 votes
probability of choosing a white chip : 8/10 reduces to 4/5
not replacing
probability of picking another white chip : 7/9

probability of both : 4/5 * 7/9 = 28/45 <==
User Smarques
by
8.0k points
2 votes

Answer: B. 28/45

Explanation:

Since, Given numbers of white chips = 8,

Black chips = 2,

Total chips = 8 + 2 = 10,

Thus, the probability of white chip in first drawn =
(8)/(10)

Now, after replacing one white chip,

Remaining white chips = 8 - 1 = 7,

Total remaining chips = 10 - 1 = 9,

Thus, the probability of white chip in second drawn =
(7)/(9)

Hence, the probability of randomly choosing a white chip, not replacing it, and then randomly choosing another white chip,

= The probability of white chip in first drawn × The probability of white chip in second drawn


=(8)/(10)* (7)/(9)


=(56)/(90)=(28)/(45)

Option B is correct.

User Yaniro
by
7.9k points