84.2k views
1 vote
An=an-1+6an-2
n>2 a0=3 a1=6

User Sophiane
by
7.7k points

1 Answer

6 votes

\begin{cases}a_0=3\\a_1=6\\a_n=a_(n-1)+6a_(n-2)&\text{for }n>2\end{cases}

Let the generating function for
a_n be


A(x)=\displaystyle\sum_(n\ge0)a_nx^n

Multiplying both sides by
x^(n-2)


a_nx^(n-2)=a_(n-1)x^(n-2)+6a_(n-2)x^(n-2)

Summing both sides over the non-negative integers greater than or equal to 2 gives


\displaystyle\sum_(n\ge2)a_nx^(n-2)=\sum_(n\ge2)a_(n-1)x^(n-2)+6\sum_(n\ge2)a_(n-2)x^(n-2)

\displaystyle\frac1{x^2}\sum_(n\ge2)a_nx^n=\frac1x\sum_(n\ge1)a_nx^n+6\sum_(n\ge0)a_nx^n

\displaystyle\frac1{x^2}\left(\sum_(n\ge0)a_nx^n-a_0-a_1x\right)=\frac1x\left(\sum_(n\ge0)a_nx^n-a_0\right)+6\sum_(n\ge0)a_nx^n

\displaystyle\frac1{x^2}\left(A(x)-3-6x\right)=\frac1x\left(A(x)-3\right)+6A(x)

A(x)=(3x+3)/(1-x-6x^2)

A(x)=\frac3{5(1+2x)}+(12)/(5(1-3x))

For
|x|<\frac13, the two series converge to


\displaystyle A(x)=\frac35\sum_(n\ge0)(-2x)^n+\frac{12}5\sum_(n\ge0)(3x)^n

\implies A(x)=\displaystyle\sum_(n\ge0)\frac{3(-2)^n+12(3)^n}5x^n

a_n=\frac{3(-2)^n+12(3)^n}5=\frac{3(-2)^n+4(3)^(n+1)}5
User Odyssee
by
8.5k points