122k views
0 votes
Please help I am so lost!!!

Please help I am so lost!!!-example-1
User Gokul N K
by
7.9k points

1 Answer

4 votes

\bf tan\left( (x)/(2) \right)+\cfrac{1}{tan\left( (x)/(2) \right)}\\\\ -----------------------------\\\\ tan\left(\cfrac{{{ \theta}}}{2}\right)= \begin{cases} \pm \sqrt{\cfrac{1-cos({{ \theta}})}{1+cos({{ \theta}})}} \\ \quad \\ \cfrac{sin({{ \theta}})}{1+cos({{ \theta}})} \\ \quad \\ \boxed{\cfrac{1-cos({{ \theta}})}{sin({{ \theta}})}} \end{cases}\\\\


\bf -----------------------------\\\\ \cfrac{1-cos(x)}{sin(x)}+\cfrac{1}{(1-cos(x))/(sin(x))}\implies \cfrac{1-cos(x)}{sin(x)}+\cfrac{sin(x)}{1-cos(x)} \\\\\\ \cfrac{[1-cos(x)]^2+sin^2(x)}{sin(x)[1-cos(x)]}\implies \cfrac{1-2cos(x)+\boxed{cos^2(x)+sin^2(x)}}{sin(x)[1-cos(x)]} \\\\\\ \cfrac{1-2cos(x)+\boxed{1}}{sin(x)[1-cos(x)]}\implies \cfrac{2-2cos(x)}{sin(x)[1-cos(x)]} \\\\\\ \cfrac{2[1-cos(x)]}{sin(x)[1-cos(x)]}\implies \cfrac{2}{sin(x)}\implies 2\cdot \cfrac{1}{sin(x)}\implies 2csc(x)
User Silhouette Hustler
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories