3.2k views
2 votes
if the xy-plane, the graph of y=x^2 and the circle with center (0,1) and radious 3 have how many points of intersection?

1 Answer

6 votes

\bf \textit{equation of a circle}\\\\ (x-{{ h}})^2+(y-{{ k}})^2={{ r}}^2 \qquad \begin{cases} center\ ({{ h}},{{ k}})\\ radius={{ r}}\\ ----------\\ center\ (0,1)\to \begin{cases} h=0\\ k=1 \end{cases}\\ r=3 \end{cases} \\\\\\ (x-0)^2+(y-1)^2=3^2\implies x^2+(y-1)^2=9 \\\\\\ (y-1)^2=9-x^2\implies y=√(9-x^2)+1\\\\ -----------------------------\\\\ \textit{where do the parabola and circle intersect? set them to equal} \\\\\\


\bf \begin{cases} y=x^2\\\\ y=√(9-x^2)+1 \end{cases}\qquad y=y\implies x^2=√(9-x^2)+1

solve for "x"
User Elisha
by
8.6k points