![\bf 2[x^2+y^2]^2=25(x^2-y^2)\qquad \qquad \begin{array}{lllll} &x_1&y_1\\ % (a,b) &({{ 3}}\quad ,&{{ 1}})\quad \end{array}\\\\ -----------------------------\\\\ 2\left[ x^4+2x^2y^2+y^4 \right]=25(x^2-y^2)\qquad thus \\\\\\ 2\left[ 4x^3+2\left[ 2xy^2+x^22y(dy)/(dx) \right]+4y^3(dy)/(dx) \right]=25\left[2x-2y(dy)/(dx) \right] \\\\\\ 2\left[ 4x^3+2\left[ 2xy^2+x^22y(dy)/(dx) \right]+4y^3(dy)/(dx) \right]=50\left[x-y(dy)/(dx) \right] \\\\\\]()
![\bf \left[ 4x^3+2\left[ 2xy^2+x^22y(dy)/(dx) \right]+4y^3(dy)/(dx) \right]=25\left[x-y(dy)/(dx) \right] \\\\\\ 4x^3+4xy^2+4x^2y(dy)/(dx)+4y^3(dy)/(dx)+25y(dy)/(dx)=25x \\\\\\ \cfrac{dy}{dx}[4x^2y+4y^3+25y]=25x-4x^3+4xy^2 \\\\\\ \cfrac{dy}{dx}=\cfrac{25x-4x^3+4xy^2}{4x^2y+4y^3+25y}\impliedby m=slope](https://img.qammunity.org/2018/formulas/mathematics/college/7etqnwnxnzvtdgrbd5ob9kov7pekmmfgi2.png)
notice... a derivative is just the function for the slope
now, you're given the point 3,1, namely x = 3 and y = 1
to find the "m" or slope, use that derivative, namely

that'd give you a value for the slope
to get the tangent line at that point, simply plug in the provided values
in the point-slope form

and then you solve it for "y", I gather you don't have to, but that'd be the equation of the tangent line at 3,1