71.5k views
0 votes
How do you calculate the derivative of y with respect to x on the equation x^3y+3xy^3=x+y?

1 Answer

4 votes

\bf x^3y+3xy^3=x+y\\\\ -----------------------------\\\\ \left[ 3x^2y+x^3(dy)/(dx) \right]+3\left[ 1\cdot y^3+x\cdot 3y^2(dy)/(dx) \right]=1+(dy)/(dx) \\\\\\ 3x^2y+x^3(dy)/(dx)+3y^3+9xy^2(dy)/(dx)-(dy)/(dx)=1\impliedby \textit{common factor} \\\\\\ \cfrac{dy}{dx}(x^3+9xy^2-1)+3x^2y+3y^3=1 \\\\\\ \cfrac{dy}{dx}(x^3+9xy^2-1)=1-3x^2y-3y^3 \\\\\\ \cfrac{dy}{dx}=\cfrac{1-3x^2y-3y^3}{x^3+9xy^2-1}
User Marthyn Olthof
by
8.4k points

No related questions found