6.5k views
5 votes
Solve this system of ODEs by eliminating y.

Let D = y' , D² = y'', D³ = y''' etc.

D²x - Dy =
e^(2t) - 6t

Dx + Dy = y - x + 3
e^(2t)

User Robmcm
by
7.2k points

1 Answer

3 votes

\begin{cases}{\mathrm D}^2x-{\mathrm D}y=e^(2t)-6t\\{\mathrm D}x+{\mathrm D}y=y-x+3e^(2t)\end{cases}

Adding the two ODEs gives


{\mathrm D}^2x+{\mathrm D}x=y-x+4e^(2t)-6t

Differentiating once gives


{\mathrm D}^3x+{\mathrm D}^2x={\mathrm D}y-{\mathrm D}x+8e^(2t)-6

{\mathrm D}^3x+{\mathrm D}^2x-{\mathrm D}y+{\mathrm D}x=8e^(2t)-6

The first ODE lets you simplify this a bit:


{\mathrm D}^3x+e^(2t)-6t+{\mathrm D}x=8e^(2t)-6

{\mathrm D}^3x+{\mathrm D}x=7e^(2t)+6t-6

Let
z={\mathrm D}x, so that
{\mathrm D}^2z={\mathrm D}^3x, and reduce the order of the ODE to get


{\mathrm D}^2z+z=7e^(2t)+6t-6

Solving this ODE for
z shouldn't be a problem for you; you would find that


z=C_1\cos t+C_2\sin t+\frac75e^(2t)+6t-6

Since
z={\mathrm D}x, integrating once with respect to
t gives the general solution for
x:


x=C_1\sin t-C_2\cos t+\frac7{10}e^(2t)+3t^2-6t+C_3

Now plug in the second derivative of this solution into the first ODE to find another ODE in
y alone.


{\mathrm D}^2x=-C_1\sin t+C_2\cos t+\frac{14}5e^(2t)+6


-C_1\sin t+C_2\cos t+\frac{14}5e^(2t)+6-{\mathrm D}y=e^(2t)-6t

{\mathrm D}y=\frac95e^(2t)+6t+6-C_1\sin t+C_2\cos t

Integrate with respect to
t and you get


y=\frac9{10}e^(2t)+3t^2+6t+C_1\cos t+C_2\sin t+C_3
User SpoonNZ
by
8.1k points