85.3k views
1 vote
Find the length of the curve x=e^t e^{-t},\;\;y=5-2t,\;\;0 \le t \le 3.

1 Answer

4 votes

\begin{cases}x(t)=e^t+e^(-t)\\y(t)=5-2t\end{cases}\implies\begin{cases}x'(t)=e^t-e^(-t)\\y'(t)=-2\end{cases}

The length of the curve is given by the integral


\displaystyle\int_0^3\sqrt{(e^t-e^(-t))^2+(-2)^2}\,\mathrm dt

Expand and rewrite the integrand:


(e^t-e^(-t))^2+(-2)^2=e^(2t)+2+e^(-2t)

=e^(-2t)(e^(4t)+2e^(2t)+1)

=e^(-2t)(e^(2t)+1)^2

\implies\sqrt{(e^t-e^(-t))^2+(-2)^2}=(e^(2t)+1)/(e^t)

Now the integral is


\displaystyle\int_0^3(e^(2t)+1)/(e^t)\,\mathrm dt=\int_0^3(e^t+e^(-t))\,\mathrm dt

=2\displaystyle\int_0^3\cosh t\,\mathrm dt

=2\sinh t\bigg|_(t=0)^(t=3)

=2\sinh 3
User Awgtek
by
7.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories