33.7k views
1 vote
Find the exact area of a circle having the given circumference. 4(√3 π) A =

User Skyy
by
8.0k points

1 Answer

2 votes

\bf \textit{circumference of a circle}\\\\ C=2\pi r\qquad \begin{cases} r=radius\\ ----------\\ C=4√(3)\ \pi \end{cases}\implies 4√(3)\ \pi=2\pi r \\\\\\ \cfrac{4√(3)\ \pi}{2\pi}= \boxed{r}\\\\ -----------------------------\\\\ \textit{area of a circle}\\\\ A=\pi r^2\qquad \boxed{r}=\cfrac{4√(3)\ \pi}{2\pi}\implies A=\pi \left( \cfrac{4√(3)\ \pi}{2\pi} \right)^2
User PaolaG
by
8.5k points