126k views
3 votes
Lim x->0 sin5x/tan2x

User Chris Wolf
by
8.6k points

1 Answer

1 vote

\displaystyle\lim_(x\to0)(\sin5x)/(\tan2x)=\lim_(x\to0)(5x)/(5x)(2x)/(2x)(\sin5x\cos2x)/(\sin2x)

\displaystyle=\left(\lim_(x\to0)(\sin5x)/(5x)\right)\left(\lim_(x\to0)(2x)/(\sin2x)\right)\left(\lim_(x\to0)(2x\cos2x)/(5x)\right)

The first two limits involve a property you should be familiar with; they both evaluate to 1. In the last limit, the
x's cancel and since
\cos2x is continuous, you're left with


\displaystyle\lim_(x\to0)\frac2\cos2x}5=\frac25\cos\left(\lim_(x\to0)2x\right)=\frac25\cos0=\frac25
User Matt Stephens
by
7.8k points

Related questions

asked May 12, 2023 219k views
Denis Matafonov asked May 12, 2023
by Denis Matafonov
9.1k points
1 answer
0 votes
219k views
asked Oct 24, 2024 210k views
Sajas asked Oct 24, 2024
by Sajas
8.2k points
1 answer
1 vote
210k views