126k views
3 votes
Lim x->0 sin5x/tan2x

User Chris Wolf
by
6.6k points

1 Answer

1 vote

\displaystyle\lim_(x\to0)(\sin5x)/(\tan2x)=\lim_(x\to0)(5x)/(5x)(2x)/(2x)(\sin5x\cos2x)/(\sin2x)

\displaystyle=\left(\lim_(x\to0)(\sin5x)/(5x)\right)\left(\lim_(x\to0)(2x)/(\sin2x)\right)\left(\lim_(x\to0)(2x\cos2x)/(5x)\right)

The first two limits involve a property you should be familiar with; they both evaluate to 1. In the last limit, the
x's cancel and since
\cos2x is continuous, you're left with


\displaystyle\lim_(x\to0)\frac2\cos2x}5=\frac25\cos\left(\lim_(x\to0)2x\right)=\frac25\cos0=\frac25
User Matt Stephens
by
5.3k points