Answer: The probability that she gets a ride 3 times in a 5-day work week is 0.31.
The probability that she gets a ride at least 2 times in a 5-day workweek is 0.97.
Explanation:
By binomial distribution formula:
, where n is the number of trials , r is the number of success, p is the probability of success and q is the probability of failure.
Given : n=5
p = 0.7
q= 1-0.7=0.3
Now, the probability that she gets a ride 3 times in a 5-day work week :
![P[X=3]=^5C_3(0.7)^3(0.3)^(5-3)\\\\=10(0.7)^3(0.3)^2=0.3087\approx0.31](https://img.qammunity.org/2018/formulas/mathematics/high-school/ieqfes2onw7bct5jelecmf6zzs7nvxwl3a.png)
The probability that she gets a ride at least 2 times in a 5-day workweek :
![P[X\geq2]=1-P[X<2]\\\\=1-(P[X=1]+P[X=0])\\\\=1-(^5C_0(0.7)^0(0.3)^(5)+^5C_1(0.7)^1(0.3)^(5-1))\\\\=1-[(0.3)^5+5(0.7)(0.3)^4]\\\\=1-0.03078=0.96922\approx0.97](https://img.qammunity.org/2018/formulas/mathematics/high-school/xypk22cs6y2v4w1qb9bg3egin91xf3vq7y.png)