66.7k views
25 votes
Identify the range y=3^x

1 Answer

9 votes

Answer:

The range of the function is:


\mathrm{Range\:of\:}3^x:\quad \begin{bmatrix}\mathrm{Solution:}\:&\:f\left(x\right)>0\:\\ \:\mathrm{Interval\:Notation:}&\:\left(0,\:\infty \:\right)\end{bmatrix}

Please also check the attached graph.

Explanation:

We also know that range is the set of values of the dependent variable for which a function is defined.

In other words,

Range refers to all the possible sets of output values on the y-axis.

It means the set of all the y-coordinates of the given points or ordered pairs on a graph will be the range.

Given the expression


y=3^x

The range of an exponential function of the form


c\cdot \:n^(ax+b)+k\:\mathrm{is}\:\:f\left(x\right)>k


k=0


f\left(x\right)>0

Therefore, the range of the function is:


\mathrm{Range\:of\:}3^x:\quad \begin{bmatrix}\mathrm{Solution:}\:&\:f\left(x\right)>0\:\\ \:\mathrm{Interval\:Notation:}&\:\left(0,\:\infty \:\right)\end{bmatrix}

Please also check the attached graph.

Identify the range y=3^x-example-1
User Succeed Stha
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories