Answer:
The range of the function is:
![\mathrm{Range\:of\:}3^x:\quad \begin{bmatrix}\mathrm{Solution:}\:&\:f\left(x\right)>0\:\\ \:\mathrm{Interval\:Notation:}&\:\left(0,\:\infty \:\right)\end{bmatrix}](https://img.qammunity.org/2022/formulas/mathematics/high-school/qixpoafhsn2pb87jfb9yny56gltxvaeaze.png)
Please also check the attached graph.
Explanation:
We also know that range is the set of values of the dependent variable for which a function is defined.
In other words,
Range refers to all the possible sets of output values on the y-axis.
It means the set of all the y-coordinates of the given points or ordered pairs on a graph will be the range.
Given the expression
![y=3^x](https://img.qammunity.org/2022/formulas/mathematics/high-school/2j9wsaqs84edi3hm5ho0ijyv70x1z15ogx.png)
The range of an exponential function of the form
![c\cdot \:n^(ax+b)+k\:\mathrm{is}\:\:f\left(x\right)>k](https://img.qammunity.org/2022/formulas/mathematics/high-school/ng9qgk76bpsdynq43rys85gwulijodf4mr.png)
![k=0](https://img.qammunity.org/2022/formulas/mathematics/high-school/11b1zeh8rn22jisspoec1yg6l5pfeqtfu0.png)
![f\left(x\right)>0](https://img.qammunity.org/2022/formulas/mathematics/high-school/axs0s0xzwtlthlwgioa1hkw6e95utifvs2.png)
Therefore, the range of the function is:
![\mathrm{Range\:of\:}3^x:\quad \begin{bmatrix}\mathrm{Solution:}\:&\:f\left(x\right)>0\:\\ \:\mathrm{Interval\:Notation:}&\:\left(0,\:\infty \:\right)\end{bmatrix}](https://img.qammunity.org/2022/formulas/mathematics/high-school/qixpoafhsn2pb87jfb9yny56gltxvaeaze.png)
Please also check the attached graph.