66.6k views
25 votes
Identify the range y=3^x

1 Answer

9 votes

Answer:

The range of the function is:


\mathrm{Range\:of\:}3^x:\quad \begin{bmatrix}\mathrm{Solution:}\:&\:f\left(x\right)>0\:\\ \:\mathrm{Interval\:Notation:}&\:\left(0,\:\infty \:\right)\end{bmatrix}

Please also check the attached graph.

Explanation:

We also know that range is the set of values of the dependent variable for which a function is defined.

In other words,

Range refers to all the possible sets of output values on the y-axis.

It means the set of all the y-coordinates of the given points or ordered pairs on a graph will be the range.

Given the expression


y=3^x

The range of an exponential function of the form


c\cdot \:n^(ax+b)+k\:\mathrm{is}\:\:f\left(x\right)>k


k=0


f\left(x\right)>0

Therefore, the range of the function is:


\mathrm{Range\:of\:}3^x:\quad \begin{bmatrix}\mathrm{Solution:}\:&\:f\left(x\right)>0\:\\ \:\mathrm{Interval\:Notation:}&\:\left(0,\:\infty \:\right)\end{bmatrix}

Please also check the attached graph.

Identify the range y=3^x-example-1
User Succeed Stha
by
3.2k points