Answer:
Side c = 10.35
Angle A = 50.87°
Angle B = 94.13°
Explanation:
The Law of Cosines states that:
a² = b² + c² - 2bcCos A
We are to to find side c, Angle A and B
side a = 14
sides b = 18
Angle C = 35°
1) Side c
= c² = a² + b² - 2abCos C
c² = 14² + 18² - 2 × 14 × 18 Cos 35
c = √(14² + 18² - 2 × 14 × 18 Cos 35)
c = 10.3512
Approximately = 10.35
2) Angle A
Cos A = b² + c² - a²/2bc
A = arc cos (b² + c² - a²/2bc)
A = arc cos (18² + 10.35² - 14²/2 × 18 × 10.35)
A = 50.8737°
A = Approximately = 50.87°
3) Angle B
Cos B = a² + c² - b²/2ac
B = arc cos (a² + c² - b²/2ac)
B = arc cos (14² + 10.35² - 18²/2 × 14× 10.35)
A = 94.13123°
A = Approximately = 94.13°