196k views
4 votes
Number 1d please help me analytical geometry

Number 1d please help me analytical geometry-example-1
User Obl
by
8.0k points

1 Answer

4 votes
for a) is just the distance formula


\bf \textit{distance between 2 points}\\ \quad \\ \begin{array}{lllll} &x_1&y_1&x_2&y_2\\ % (a,b) A&({{ x}}\quad ,&{{ 1}})\quad % (c,d) B&({{ -4}}\quad ,&{{ 1}}) \end{array}\qquad % distance value \begin{array}{llll} d = \sqrt{({{ x_2}}-{{ x_1}})^2 + ({{ y_2}}-{{ y_1}})^2} \\\\\\ √(8) = \sqrt{({{ -4}}-{{ x}})^2 + (1-1)^2} \end{array}
-----------------------------------------------------------------------------------------
for b) is also the distance formula, just different coordinates and distance


\bf \textit{distance between 2 points}\\ \quad \\ \begin{array}{lllll} &x_1&y_1&x_2&y_2\\ % (a,b) A&({{ -7}}\quad ,&{{ y}})\quad % (c,d) B&({{ -3}}\quad ,&{{ 4}}) \end{array}\ \ \begin{array}{llll} d = \sqrt{({{ x_2}}-{{ x_1}})^2 + ({{ y_2}}-{{ y_1}})^2} \\\\\\ 4√(2) = √((-3-(-7))^2+(4-y)^2) \end{array}
--------------------------------------------------------------------------
for c) well... we know AB = BC.... we do have the coordinates for A and B
so... find the distance for AB, that is
\bf \textit{distance between 2 points}\\ \quad \\ \begin{array}{lllll} &x_1&y_1&x_2&y_2\\ % (a,b) A&({{ -3}}\quad ,&{{ 0}})\quad % (c,d) B&({{ 5}}\quad ,&{{ -2}}) \end{array}\qquad % distance value \begin{array}{llll} d = \sqrt{({{ x_2}}-{{ x_1}})^2 + ({{ y_2}}-{{ y_1}})^2}\\\\ d=\boxed{?} \end{array}

now.. whatever that is, is = BC, so the distance for BC is


\bf \textit{distance between 2 points}\\ \quad \\ \begin{array}{lllll} &x_1&y_1&x_2&y_2\\ % (a,b) B&({{ 5}}\quad ,&{{ -2}})\quad % (c,d) C&({{ -13}}\quad ,&{{ y}}) \end{array}\qquad % distance value \begin{array}{llll} d = \sqrt{({{ x_2}}-{{ x_1}})^2 + ({{ y_2}}-{{ y_1}})^2}\\\\ d=BC\\\\ BC=\boxed{?} \end{array}

so... whatever distance you get for AB, set it equals to BC, BC will be in "y-terms" since the C point has a variable in its ordered points

so.. .solve AB = BC for "y"
------------------------------------------------------------------------------------

now d) we know M and N are equidistant to P, that simply means that P is the midpoint of the segment MN

so use the midpoint formula


\bf \textit{middle point of 2 points }\\ \quad \\ \begin{array}{lllll} &x_1&y_1&x_2&y_2\\ % (a,b) M&({{-2}}\quad ,&{{ 1}})\quad % (c,d) N&({{ x}}\quad ,&{{ 1}}) \end{array}\qquad % coordinates of midpoint \left(\cfrac{{{ x_2}} + {{ x_1}}}{2}\quad ,\quad \cfrac{{{ y_2}} + {{ y_1}}}{2} \right)=P \\\\\\


\bf \left(\cfrac{{{ x_2}} + {{ x_1}}}{2}\quad ,\quad \cfrac{{{ y_2}} + {{ y_1}}}{2} \right)=(1,4)\implies \begin{cases} \cfrac{{{ x_2}} + {{ x_1}}}{2}=1\leftarrow \textit{solve for

now, for d), you can also just use the distance formula, find the distance for MP, then since MP = PN, find the distance for PN in x-terms and then set it to equal to MP and solve for "x"


No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.