107k views
3 votes
Find an identity for cos(4t)

cos

(
4
t
)
in terms of cos(t)
cos

(
t
)
.

User Jokeyrhyme
by
7.8k points

1 Answer

2 votes
We must know that
\cos(2x)=2\cos^2(x)-1. So:


\cos(4t)=\cos(2\cdot2t)\\\\ \cos(4t)=2\cos^2(2t)-1\\\\ \cos(4t)=2(2\cos^2(t)-1)^2-1\\\\ \cos(4t)=2(4\cos^4(t)-4\cos^2(t)+1)-1\\\\ \cos(4t)=8\cos^4(t)-8\cos^2(t)+2-1\\\\ \boxed{\cos(4t)=8\cos^4(t)-8\cos^2(t)+1}
User Sger
by
8.7k points