65.3k views
5 votes
Find the value or values of y in the quadratic equation y2 + 4y + 4 = 7. A. y = −2 + √ 7 , y = −2 − √ 7 B. y = 2, y = 7 C. y = −2√ 7 , y = 2√ 7 D. y = 2 + 2√ 7 , y = 2 − 2√ 7

User Jonho
by
6.2k points

2 Answers

2 votes
A) y = -2 + rt7, y = -2 - rt7
User Jason Gabel
by
6.1k points
2 votes

Answer:

Option A

The values of y are:
y=-2+√(7) or
y=-2-√(7).

Explanation:


y^2+4y+4=7

Subtract 7 from both the sides:


y^2+4y+4-7=7-7

On Simplify:


y^2+4y-3=0

Solve with the quadratic formula:

For a quadratic equation of the form
ax^2+bx+c=0 the solutions are:


x_(1,2)=(-b\pm√(b^2-4ac))/(2a)

For a=1, b=4 and c=-3 we have,


y_(1,2)=\frac{-4\pm √(4^2-4\cdot 1 \cdot (-3))} {2\cdot 1}


y_(1,2)=\frac{-4\pm√(16+12)} {2}=
\frac{-4\pm√(28)} {2}

on solving we get,
y_(1,2)=(-4\pm2√(7))/(2)=
-2\pm √(7)

therefore, the values of y are:


y=-2+√(7) or
y=-2-√(7)





User Sij
by
6.2k points