153k views
2 votes
What is the area of a 15-gon with a perimeter of 90 m

2 Answers

6 votes

Assuming a regular polygon, then s =90/15=6
A 15- gon has exterior angles = 360/15=24, so interior angles of 156
Form a triangle with a radius, apothem and a half- side
Then the 156/2= 78 degrees, with the apothem being opposite, and the halfside being adjacent= 3
so tan 78= a/3 and a= 3tan 78=14.114

Then area = (1/2)Pa= (1/2)(90)(a)=635.13 m^2
User Farrellmr
by
8.3k points
3 votes

Answer:

Area of the polygon = 635.13 m²

Explanation:

Since area of the polygon = (1/2) × perimeter × apothem

We have to calculate the are of a 15-gon with a perimeter 90 m.

Here parameter is given and we have to calculate the value of apothem.

Since side of a polygon = perimeter / total number of sides = 90/15 = 6

Now if we take an example of pentagon as shown in the figure, number of triangles formed at the center A is equal to number of sides of a polygon.

And in a triangle formed by ABC in any polygon ∠BAC = 360°/ (n) number of sides.

Now we come back to our question ∠BAC = 360/15 = 24

and ∠BAD = 12°(AD is the perpendicular bisector of BC)

Now tan 12 = 3/ h

⇒ 0.2125 = 3/ h

⇒ h = 3/0.2125 = 14.114 m

Now we apply the formula to calculate the area of the polygon.

Area = (1/2) × perimeter × apothem (h)

=(1/2)×90×14.114 = 635.13 m²

What is the area of a 15-gon with a perimeter of 90 m-example-1
User Tom Wang
by
9.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories