143k views
15 votes
Simplify csc θ(1−cos^2 θ)/sinθ cos θ to a single trigonometric function

User Aqsa
by
4.7k points

1 Answer

10 votes

Answer:


(cosec\alpha(1-cosx^(2) \alpha ) )/(sin\alpha cos\alpha ) = sec\alpha

Explanation:

Step(i):-

Given that the trigonometric function


(cosec\alpha(1-cosx^(2) \alpha ) )/(sin\alpha cos\alpha )

we know that sin²∝ + cos²∝ = 1

⇒ sin²∝ = 1- cos²∝

Now we have to simplify the given trigonometric function

=
(cosec\alpha(sin^(2) \alpha ) )/(sin\alpha cos\alpha )

=
(cosec\alpha(sin \alpha ) )/( cos\alpha )

Step(ii)

we know that cosec∝ = 1/ sin∝

=
((1)/(sin\alpha ) (sin \alpha ) )/( cos\alpha )

After cancellation sine function, we get

=
(1 )/( cos\alpha ) = sec\alpha

Final answer:-


(cosec\alpha(1-cosx^(2) \alpha ) )/(sin\alpha cos\alpha ) = sec\alpha

User Bob Arnson
by
4.8k points