6.3k views
16 votes
Suppose that LMN is isosceles with base LN suppose that M

Suppose that LMN is isosceles with base LN suppose that M-example-1

1 Answer

4 votes

Given:

In an isosceles triangle LMN, LM=MN.


m\angle M=(3x+17)^\circ,m\angle L=(2x+36)^\circ

To find:

The measure of the angles L, M and N.

Solution:

In triangle LMN,


LM=MN (Given)


m\angle N=m\angle L=(2x+36)^\circ (Base angles of an isosceles triangle are equal)

Now,


m\angle L+m\angle M+m\angle N=180^\circ


(2x+36)^\circ+(3x+17)^\circ+(2x+36)^\circ=180^\circ


(7x+89)^\circ=180^\circ


(7x+89)=180

On further simplification, we get


7x=180-89


7x=91


x=(91)/(7)


x=13

The value of x is 13. Using this value, we get


m\angle L=(2(13)+36)^\circ


m\angle L=(26+36)^\circ


m\angle L=62^\circ

Similarly,


m\angle M=(3(13)+17)^\circ


m\angle M=(39+17)^\circ


m\angle M=56^\circ

And,


m\angle N=m\angle L


m\angle N=62^\circ

Therefore, the measure of angles are
m\angle L=62^\circ,m\angle M=56^\circ,m\angle N=62^\circ.

User Yuvals
by
3.2k points